Multilevel Balancing Domain Decomposition at Extreme Scales

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel Balancing Domain Decomposition at Extreme Scales

In this talk we will summarize the steps we have followed towards highly scalable solver codes tailored for Finite Element (FE) analysis in our simulation software FEMPAR. In the first part of the talk, we will introduce the Balancing Domain Decomposition by Constraints (BDDC) preconditioning approach and some of the salient properties that make it highly suitable for extreme scale solver desig...

متن کامل

Balancing Domain Decomposition

The Neumann-Neumann algorithm is known to be an e cient domain decomposition preconditioner with unstructured subdomains for iterative solution of nite element discretizations of di cult problems with strongly discontinuous coe cients [6]. However, this algorithm su ers from the need to solve in each iteration an inconsistent singular problem for every subdomain, and its convergence deteriorate...

متن کامل

Space-time balancing domain decomposition

In this work, we propose two-level space-time domain decomposition preconditioners for parabolic problems discretized using finite elements. They are motivated as an extension to space-time of balancing domain decomposition by constraints preconditioners. The key ingredients to be defined are the sub-assembled space and operator, the coarse degrees of freedom (DOFs) in which we want to enforce ...

متن کامل

Balancing Domain Decomposition for Plates

We show that the Neumann-Neumann preconditioner with a coarse problem can be applied to the solution of a system of linear equations arising from the thin plate problem discretized by the HCT and DKT elements. The condition number is asymptotically bounded by log 2 (H=h), with H the subdomain size and h the element size. The bound is independent of coeecient jumps of arbitrary size between subd...

متن کامل

Multilevel domain decomposition for electronic structure calculations

We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and Density Functional Theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2016

ISSN: 1064-8275,1095-7197

DOI: 10.1137/15m1013511